Bone Health in FSHD
June 27, 2015
Baltimore
FSH Society

Carla M. Grosmann, MD

Wellstone Fellow in Clinical Research in Muscular Dystrophy
The Center for Genetic Muscle Disorders
Johns Hopkins School of Medicine
Kennedy Krieger Institute

Clinical Professor of Neurosciences and Pediatrics
University of California San Diego (UCSD)
Rady Children's Hospital
FSHD
Facioscapulohumeral Muscular Dystrophy

• Inherited condition

• Weakness in FSH distribution

• Loss of strength and decreased muscle mass
FSHD is a muscle disease—Why do we care about bone?

- As muscle mass decreases, bone density decreases.
- With increasing muscle weakness, the chance of falling increases.

→ Increased Risk of Fracture
- Pain
- Loss of mobility
- Declining quality of life
Bone health is relevant to FSHD

- Bone physiology
- Bone health in the general population
 - Risk factors
 - Measure
 - Prevention
 - Treatment
- Bone health in Neuromuscular Disease
- Current Bone Health Study in FSHD
What is the Function of Bone?

Structural
• Protects our organs from injury
• Attach to our ligaments and muscles and allows us to move

Metabolic
• Reservoir for calcium and other minerals
Components of living Bone

- Composed of collagen and minerals
 - **Collagen** is a protein that provides a flexible framework
 - Layers of twisted fibrils
 - Calcium and phosphate are minerals that harden bone to withstand stress
Types of Bone in the Human Skeleton

• **Outer Cortical:**
 • dense and compact
 • resistant to bending

• **Inner Trabecular:**
 • less dense (honeycomb)
 • more elastic
 • increases in density during puberty.
 • decreases in density with age
Bone Growth is Dynamic Remodeling

• Bone is constantly being renewed as bone is removed and replaced

• The process of formation and resorption is called bone remodeling
Bone Remodeling Cells

• **Osteoblasts:** Formation
 cells that lay down new bone

• **Osteoclasts:**
 - large cells that *resorb* old or damaged bone
 - **Resorption** breaks down and removes bone.
Bone remodeling

Formation
- Osteoblast

Resorption
- Osteoclast
- Lining cells
Bone Remodeling varies with age

- **Childhood**: bone formation outpaces resorption
- **Young adult**: formation couples resorption
- **With aging**: resorption exceeds formation ➔ loss of bone mass
Determinants of Bone Mass

• Genetic predisposition

• Endocrine
 – Hormones

• Lifestyle
 – Diet
 – Exercise
Hormones

• Estrogen
 ▪ Protective effect on bone
 ▪ Prevents osteoclast formation ➔ less resorption
 ▪ With menopause, there is a decline in estrogen
 leads to accelerated bone loss in post-menopausal women

• Testosterone
 ▪ Inhibits bone resorption and maintains bone mass
 ▪ Low levels are associated with accelerated bone turnover and increased fracture risk
Hormones regulate bone remodeling

- **Parathyroid hormone** (PTH)
 - released when the [calcium] is low
 - stimulates bone formation.

- **Calcitonin**
 - produced by the thyroid gland.
 - stimulates bone formation
 - released when calcium is high
 - reduces osteoclast activity

FDA approved for the treatment of osteoporosis.
- PTH
- Calcitonin nasal spray
Diet - Nutrition
Calcium and Vitamin D

Vitamin D

• Needed for calcium absorption
• Calcium cannot be absorbed from the small intestine without vitamin D

• Rickets: Deficiency of vitamin D
 softening of the bones (osteomalacia)

• Levels can be measured by checking 25-hydroxyvitamin D₃

• Sources?
Vitamin D

Are you getting enough?
Sources of Vitamin D

Sun Exposure & Food

- Skin exposure to ultraviolet B radiation from the sun provides vitamin D.

- Requires direct exposure to sun without use of sunblock

“An individual in a bathing suit generates 10,000 to 25,000 IU of vitamin D2 after a minimal erythemal dose, which is the safest amount of radiation sufficient to produce redness in the skin…”

Holick et al J Bone Miner Res. 2007 Dec;22 Suppl 2:V28-33
Sources of Vitamin D

Food sources
- Fatty fish (salmon, tuna, herring)
- Eggs
- Fortified products
 - soy milk, almond milk, rice milk, orange juice, cereal
- Dietary supplements
Calcium

• Required for the maintenance of bone
• Needs change through the life cycle
• Peak nutritional needs
 – Adolescence and
 – During periods of rapid growth
Sources of Calcium

• Dairy
 Milk products, cheese, yogurt

• Non-dairy sources
 Fortified products
 • Soy milk, almond milk, rice milk, orange juice, cereal

• Tums
Sources of Calcium

- Broccoli
- Bok Choy
- Almonds
- Pumpkin Seeds
- Okra
- Collards
- Turnip Greens
- Prickly Pear
- Kohlrabi
- Leeks
- Brazil Nuts
- Artichokes
- Avocado
- Celery
- Green Beans
- Coconut Meat
- Onions
- Gooseberry
- Fennel
- Dandelion Greens
- Swiss Chard
- Spinach
- Kale
- Butternut Squash
OPTIMAL DAILY CALCIUM INTAKE

<table>
<thead>
<tr>
<th>Life Stage</th>
<th>Recommended Dietary Allowance (mg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – 3</td>
<td>700</td>
</tr>
<tr>
<td>4 – 8</td>
<td>1,000</td>
</tr>
<tr>
<td>9 – 18</td>
<td>1,300</td>
</tr>
<tr>
<td>19 – 50</td>
<td>1,000</td>
</tr>
<tr>
<td>51 – 70 males</td>
<td>1,000</td>
</tr>
<tr>
<td>51 – 70 females</td>
<td>1,200</td>
</tr>
<tr>
<td>71+</td>
<td>1,200</td>
</tr>
<tr>
<td>14 - 18 years old</td>
<td>1,300</td>
</tr>
</tbody>
</table>

Determinants of Bone Mass

- Genetic predisposition
- Endocrine
 - Hormones
- Lifestyle
 - Diet
 - Exercise
Lifestyle
Physical activity “Use it or lose it”

• **Exercise** promotes bone formation

• **Weight-bearing activities and mechanical stress** – promote ↑ bone mineral density

• Athletes in **high-impact** sports have greater bone density than those in **low-impact** sports
Lifestyle
Effect of Inactivity

- Prolonged bed rest and immobilization
 - inhibits osteoblast bone formation
 - accelerates osteoclast resorption
 - Resulting in bone loss
Mobility and Gravity are important for preserving bone mass!

• Mechanical stress and lack of gravity affect muscle and bone.

• Astronauts lose muscle and bone mass.
 Study: 13 astronauts on the ISS for 4.3 to 6.5 months
 • Reductions in proximal femoral bone strength comparable to a lifetime loss in Caucasian females*

Who is likely to have a fracture?

Risk factors

• Age > 65 both men and women
• Postmenopausal women: sharp decline in estrogen
• Ethnicity: Caucasian and Asian
• Family history of fracture
• Previous history of fracture
• Low body weight <127 pounds
• Smoking
• Alcohol >3 /day
• Certain drugs (steroids)
Figure 1. Incidence of osteoporotic fractures in women.

Incidence of osteoporotic fractures in men

Wasnich RD, Osteoporos Int 1997;7 Suppl 3:68-72
Can we measure bone health?

• Imaging

• Bone biomarkers
What is the utility of bone turnover biomarkers?

- Role in clinical management
 - Look at the turnover of bone indicating formation and resorption

- Role in research
 - Used to monitor outcomes in research studies
Best predictor for fracture

Bone Mineral Density (BMD)

BMD test: determines whether you have osteoporosis

* DEXA scan = *Dual-energy x-ray absorptiometry*

- Imaging technique of choice for measuring BMD
- Easy
- Minimal radiation

Two X-ray beams are aimed at the bones
Soft tissue is subtracted out
⇒ BMD is determined
Lean Body Mass (LBM)

- Can be estimated by DEXA

- With age, there is a decline in LBM and an increase in fat

- Suggestive evidence that lean body mass is positively correlated to bone mass*
 - Higher lean body mass (LBM) = more bone mass
 - Reduced fracture risk

Kaji, H. J Bone Metab. 2014 Feb;21(1):29-40. Interaction between Muscle and Bone.
Results of the DEXA scan

- Normal
- Osteopenia
- Osteoporosis

Values of Bone Mineral Density are in the form of T and Z scores.

“The Z-score at the left hip -3.8 ...”

- The T-score compares the patients’ BMD to the average for young adults at the time of peak bone mass
- The Z-score compares the BMD to persons of the same age.
Osteoporosis and Osteopenia

- “Osteo” is the Greek word for bone
- “- penia” is the Greek word for deficiency
- “- porosis” a porous condition (filled with holes)
Osteoporosis

• What is it?
 Loss of mineral and structural integrity of the bone

• Why do we care?
 Higher risk of fractures
Osteoporosis

Bone is fragile and prone to fracture
Osteoporosis and Osteopenia
Criteria set by the WHO
(World Health Organization)

• **Osteopenia** is defined as BMD between -1.0 and -2.5 SD in Z scores

• **Osteoporosis** BMD of ≤ -2.5 SD

• Any fragility fracture = **Osteoporosis** regardless of the Z score
How can we reduce the risk of fractures?

- Lifestyle
- Nutrition
 - Calcium: If deficient, higher risk for osteoporosis
 - Vitamin D
 - Required for intestinal absorption of calcium
 - Blood Level varies by season and latitude
 - Sunblock decreases absorption of Vitamin D
- Pharmacology
Treatment for low BMD: Bisphosphonates

- alendronate (Fosamax) oral weekly
- risedronate (Actonel) oral daily, weekly or monthly
- ibandronate (Boniva) oral
- zolendronic acid (Reclast) IV once per year
- pamidronate (Aredia) every 3 months

- Oral agents are easier to take
 - Must be upright for at least 30 minutes with to reduce the risk of esophagitis
Bisphosphonates
Effective Rx for restoring BMD

• Reduce **bone resorption** by ↓ the activity of osteoclasts

• Side effects: flu-like symptoms especially with the first infusion, hypocalcaemia and osteonecrosis of the jaw

• Duration? After 5 years benefit of bisphosphonates not clear
Treatment of osteoporosis: Unresponsive or intolerant to bisphosphonates

• Anti-resorptive agents
 – Denosumab (Prolia)
 Antibody binds to a regulator of osteoclasts (RANKL) to inhibit bone resorption (SubQ every 6 months)

• Stimulate bone formation
 • Teriparatide hrPTH: Parathyroid hormone (Forteo)
 – Daily injection
 » can be used for up to 24 months
Bone Health in Neuromuscular Disorders

- Published data is limited
- Much of what we know comes from the \textit{Pediatric} neuromuscular literature

- Children with Spinal Muscular Atrophy (SMA) Duchenne Muscular Dystrophy (DMD)
 - Low bone density
 - Increased fractures
Bone health in boys with Duchenne (DMD)

- Fracture risk factors
 - Progressive muscle weakness
 - Limited weight bearing
 - Vitamin D deficiency
 - Use of corticosteroids

- Corticosteroids are associated with
 - Reduced osteoblast activity (↓ bone formation)
 - Increased osteoclast activity (↑ bone resorption)
Study: Use of Vitamin D in boys with Duchenne (DMD)

*Study over 3 years: 33 boys with DMD

➢ At baseline:
 - Bone Mineral Density (BMD) was low
 - Bone resorption biomarkers were increased

➢ Intervention: Given **Vitamin D** along with calcium
 ➢ Markers of bone resorption decreased
 ➢ BMD improved in 66% by DEXA in 22/33 boys

✧ Conclusion:
Vitamin D is an effective first line approach in controlling bone turnover and increasing Bone Mineral Density in boys with DMD

Guidelines for Bone Health exist in Duchenne Muscular Dystrophy

Diagnosis and management of Duchenne muscular dystrophy

<table>
<thead>
<tr>
<th>Bone-health issues</th>
<th>Recommended bone-health assessments</th>
<th>Possible bone-health interventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underlying factors for poor bone health</td>
<td>Suggested tests</td>
<td>Possible interventions</td>
</tr>
<tr>
<td>Decreased mobility</td>
<td>Serum: • Calcium • Phosphate • Alkaline phosphatase • 25-OH vitamin D level (in springtime or bi-annually) • Consider: magnesium, PTH level</td>
<td>Vitamin D: • Vitamin D treatment for proven deficiency is necessary • Supplementation should be considered in all children if levels cannot be maintained</td>
</tr>
<tr>
<td>Muscle weakness</td>
<td>Urine: • Calcium (for calciuria) • Sodium • Creatinine</td>
<td>Calcium: • Calcium intake and possible supplementation should be carried out in consultation with a dietitian</td>
</tr>
</tbody>
</table>

Glucocorticoid therapy

- Resulting in:
 - Fractures (long bone and vertebral)
 - Osteopenia
 - Osteoporosis
 - Kyphoscoliosis
 - Bone pain
 - Reduced quality of life

Bone imaging

- DEXA scan
 - Obtain a baseline at:
 - Age 3+ years
 - Start of glucocorticoid therapy
 - Repeat annually for those at risk:
 - History of fractures
 - On chronic glucocorticoid therapy
- DEXA Z score <-2

Spine radiograph

- If kyphoscoliosis is noted on clinical examination therapy
- If back pain is present, to assess vertebral compression fracture

Bone age (left wrist) radiography

- To assess growth failure (on or off glucocorticoid therapy)

Bisphosphonates

- Intravenous bisphosphonates for vertebral fracture are indicated
- Oral bisphosphonates as treatment or as a prophylactic measure remain controversial
Do individuals with FSHD have an increased risk for fractures?

- As strength ↓
 risk of falls ↑

- As muscle mass ↓
 bone mineral density ↓
How can we assess for fracture risk in the FSHD community?

• At present no guidelines exist for screening bone health in FSHD

• To address this need for the FSHD community

FSHD Bone Health Study
Conceived and designed through FSHD Global Principal Investigators
 » Dr. Kathryn Wagner, USA
 » Dr. Alastair Corbett, Australia
About Us

The FSHD Global Research Foundation is an Australian not-for-profit organisation dedicated to finding a treatment and cure for Facioscapulohumeral Dystrophy (FSHD).

Grant 23: Clinical Study of Bone Health in FSHD

Research Institution: Kennedy Krieger Institute, Baltimore, MD, USA & Concord Hospital, Sydney, NSW, Australia
Principle Investigator: Dr. Kathryn Wagner & Prof. Alastair Corbett
Primary Focus: Clinical Study of Bone Health in FSHD
Type: International and Australian Research Grant collaboration
Status: Currently underway
3 studies found for: FSHD health

Modify this search | How to Use Search Results

<table>
<thead>
<tr>
<th>Rank</th>
<th>Status</th>
<th>Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Recruiting</td>
<td>Bone Health in Facioscapulohumeral Muscular Dystrophy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Condition: Facioscapulohumeral Muscular Dystrophy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intervention:</td>
</tr>
<tr>
<td>2</td>
<td>Active, not recruiting</td>
<td>Study of Morphology and Functional Magnetic Resonance Imaging (MRI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Muscle Patients With Muscular Dystrophy Type FSHD Benefiting a Physical Training Introduced.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conditions: Muscular Dystrophy; Facioscapulohumeral</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interventions: Device: MRI; Procedure: Biopsy</td>
</tr>
<tr>
<td>3</td>
<td>Unknown†</td>
<td>Molecular Analysis of Patients With Neuromuscular Disease</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conditions: Limb-girdle Muscular Dystrophy; Duchenne Muscular Dystrophy; Becker Muscular Dystrophy; Facioscapulohumeral Muscular Dystrophy</td>
</tr>
</tbody>
</table>
RESEARCH PARTICIPANT INFORMED CONSENT AND PRIVACY AUTHORIZATION FORM

Protocol Title: Bone Health in Facioscapulohumeral Muscular Dystrophy: A cross-sectional study

Application No.: IRB00031738

Sponsor: FSHD Global Research Foundation

Principal Investigator: Kathryn Wagner, MD, PhD
707 North Broadway
Baltimore, MD 21205
Phone: 443-923-9525
Fax: 443-923-9515

If you are using Epic for this study, fax a copy of the signed consent form to 410-367-7382.

Patient I.D. Plate
Cross-sectional study of bone health in adults with FSHD

- Single visit
- Neurological history & exam
- Muscle strength testing & timed functions
- DEXA scan for bone mineral density and LBM
- Serum biomarkers

- Goal - 50 patients (as of this week 42 have enrolled!)
Biomarkers

FSHD Bone Study

• Bone resorption
 • C-terminal telopeptides

• Bone formation
 • Osteocalcin, bone specific alkaline phosphatase

• Other markers of bone health
 • Calcium, TSH, PTH, CPK, CRP, Vitamin D

• Allele size
FSHD: Chromosome 4q35 deletion

Allele sizes:
- **Normal** = > 42kb
- **Borderline** = 38 - 41kb
- **Abnormal (FSHD-associated)** = < 38kb
FSHD1 caused by deletion of D4Z4 repeat units on Chromosome 4q35

- D4Z4 unit contains copies of the DUX4 factor that controls expression of other genes
- DUX4 normally is “turned off” or not expressed
- Deletion in the D4Z4 portion → DUX4 is expressed
- Expression of DUX4 plays a causal role in FSHD skeletal muscle pathophysiology
Aims: FSHD Bone Health Study

- **Bone mineral density and Lean body mass**
 Are they reduced in FSHD?

- Do individuals with FSHD have more fractures compared to age matched controls?

- Does BMD correlate with muscle strength and timed tests?

- Do fractures or BMD correlate with **Allele size** and **Bone turnover markers**?
Ultimate GOAL of the Study

- Provide evidence for establishing medical guidelines for screening, treatment and maintaining bone health in FSHD

- Promote highest standard of care and quality of life for the FSHD community
Osteoporosis and Fractures: Steps for prevention

• Balanced diet rich in calcium and vitamin D
• Weight-bearing exercises (dance, walk, shop)
• Healthy lifestyle with no smoking or excessive alcohol intake
• Bone density testing for at risk population
• Pharmacologic Rx for low BMD when appropriate

• Resource www.nof.org
Thank you!

PATIENTS and their families

Members of the Center for Genetic Muscle Disorders & the Wagner lab
Prolia (Denosumab)

- Biologic from Amgen supposedly better than others because:
 - Targeted mechanism – RANKL inhibitor
 - Inhibits formation and function of osteoclasts
 - Improved dosing schedule
 - s.c. once every 6 months
 - Superior tolerability
 - Reduced fracture risk by 68%
 - Cost >$10,000/year

- August 2009 FDA panel:
 - Data from 30 clinical trials
 - Only 2 of 6 indications
 - Safety issues
Denosumab inhibits osteoclast formation.