Press Release

SAN RAFFAELE / TELETHON – FSHD MUSCULAR DYSTROPHY

Study published in *Cell* discovers

new mechanism of disease and potential therapeutic target.

Milan, May 7, 2012 - A new defect in gene regulation, never before seen in a human disease is the cause of one of the most common forms of muscular dystrophy: Facio-Scapulo-Humeral muscular dystrophy (FSHD). Describe this, in paper published in the journal *Cell*, is Davide Gabellini, a researcher of the Dulbecco Telethon Institute at the IRCCS San Raffaele Hospital in Milan, Italy where he Direct the Gene Expression and Muscular Dystrophy Unit. The discovery gives hope to people affected by the disease and may help explain other enigmatic diseases, including some forms of diabetes or cancer.

For **at least 500,000 people around the world**, FSHD causes progressive loss of facial muscles, shoulders and upper arms, making it difficult to walk, lift the arms or even smile. For years, the mechanism underlying the disease has eluded scientists, but this study sheds light describing an entirely new, complex mechanism: FSHD occurs because a non-coding RNA allows neighbors genes to become hyperactive.

In 1992, the cause of FSHD had been traced to the deletion in a region of chromosome 4 which consists of repeating units of DNA called D4Z4. At that time, many scientists had assumed that the FSHD would follow the classic mechanism of other genetic diseases: mutation of a gene within the D4Z4 with loss of its ability to produce a protein. Subsequent research, conducted when Davide Gabellini was in the U.S., however, have found the opposite: FSHD is not caused by the loss of a protein, but by an excess of protein production. The next step was to understand how D4Z4 is able to regulate protein production from the FSHD region. With the new study, the group directed by Gabellini has shown that the loss of repeated sequences D4Z4 allows the production of a new non-coding RNA, that researchers have called DBE-T. It is DBE-T to be directly responsible for the activation of the expression of genes in the region FSHD and therefore of the increased protein production.

"The mechanism we described is new and represents an interesting model to address other complex diseases in which the classical candidate gene approach has not been successful," says Davide Gabellini.

Examining muscle biopsies, Gabellini and his colleagues Daphne Cabianca and Valentina Casa have found that DBE-T is produced exclusively in FSHD patients, but not in healthy subjects. They also demonstrated experimentally that, by blocking the production of DBE-
T, one obtains a normalization of gene expression in the region FSHD: this suggests that DBE-T may be a valid therapeutic target for disease control.

The repetitive DNA sequences (regions repeated thousands of times in our genome and that, not coding for proteins, are the mostly ignored) represent over 50% of human genetic material.

"There is a good chance that alterations in other repetitive sequences in our genome are responsible for bad gene regulation in other diseases," said Gabellini. For example, regions of DNA are repeated near the insulin gene and their alteration may predispose to diabetes.

This study was made possible thanks to funding from the European Research Council (ERC), the Italian Ministry of Health, the Muscular Dystrophy Association USA (MDA), the Association Française contre les Myopathies (AFM), the FSHD Global Research Foundation, a Jaya Motta private donation, the FSH Society, Inc. and the Dulbecco Telethon Institute.

A Long ncRNA Links Copy Number Variation to a Polycomb/Trithorax Epigenetic Switch in FSHD Muscular Dystrophy, April 26 2012, Cell

Daphne S. Cabianca1,2, Valentina Casa1,2, Beatrice Bodega3, Alexandros Xynos1, Enrico Ginelli3, Yujiro Tanaka4, and Davide Gabellini1.

1. Dulbecco Telethon Institute at San Raffaele Scientific Institute, Division of Regenerative medicine, Stem cells, and Gene therapy, Milan, Italy
2. Università Vita-Salute San Raffaele, Milan, Italy
3. Department of Biology and Genetics for Medical Sciences, University of Milan, Italy
4. Genome Structure and Expression, Graduate School of Biomedical Science, Tokyo Medical and Dental University, Tokyo, Japan

For information:

Fondazione San Raffaele del Monte Tabor Press Office
Phone +39 02 2643 4465/4466
ufficio.stampa@hsr.it
www.sanraffaele.org

Contact person Marta Ammoni ammoni.marta@hsr.it

Fondazione Telethon Press Office
Phone +39 06 44015 402/394
ufficiostampa@telethon.it
www.telethon.it

Contact person Anna Maria Zaccheddu azaccheddu@Telethon.it